Назначение стартерных аккумуляторных батарей
Теоретические основы преобразования химической энергии в электрическую
Разряд аккумулятора
Заряд аккумулятора
Расход основных токообразующих реагентов
Электродвижущая сила
Внутреннее сопротивление
Напряжение при заряде и разряде
Емкость аккумулятора
Энергия и мощность аккумулятора
Саморазряд аккумулятора
Назначение стартерных аккумуляторных батарей
Основная функция батареи - надежный пуск двигателя. Другая функция - энергетический буфер при работающем двигателе. Ведь наряду с традиционными видами потребителей, появилось множество дополнительных сервисных устройств, улучшающих комфорт водителя и безопасность движения. Батарея компенсирует дефицит энергии при движении по городскому циклу с частыми и длительными остановками, когда генератор не всегда может обеспечить отдачу мощности, необходимую для полного обеспечения всех включенных потребителей. Третья рабочая функция - энергоснабжение при выключенном двигателе. Однако длительное использование электроприборов во время стоянки с неработающим двигателем (или двигателем, работающем на холостом ходу), приводит к глубокому разряду батареи и резкому снижению ее стартерных характеристик.
Батарея предназначена еще и для аварийного электропитания. При отказе генератора, выпрямителя, регулятора напряжения или при обрыве ремня генератора она должна обеспечить работу всех потребителей, необходимых для безопасного движения до ближайшей СТО.
Итак, стартерные аккумуляторные батареи должны удовлетворять следующим основным требованиям:
• обеспечивать нужный для работы стартера разрядный ток, то есть обладать малым внутренним сопротивлением для минимальных внутренних потерь напряжения внутри батареи;
• обеспечивать необходимое количество попыток пуска двигателя с установленной продолжительностью, то есть иметь необходимый запас энергии стартерного разряда;
• иметь достаточно большую мощность и энергию при минимально возможных размерах и массе;
• обладать запасом энергии для питания потребителей при неработающем двигателе или в аварийной ситуации (резервная емкость);
• сохранять необходимое для работы стартера напряжение при понижении температуры в заданных пределах (ток холодной прокрутки);
• сохранять в течение длительного времени работоспособность при повышенной (до 70 "С) температуре окружающей среды;
• принимать заряд для восстановления емкости, израсходованной на пуск двигателя и питание других потребителей, от генератора при работающем двигателе (прием заряда);
• не требовать специальной подготовки пользователей, обслуживания в процессе эксплуатации;
• иметь высокую механическую прочность, соответствующую условиям эксплуатации;
• сохранять указанные рабочие характеристики продолжительное время в процессе эксплуатации (срок службы);
• обладать незначительным саморазрядом;
• иметь невысокую стоимость.
Теоретические основы преобразования химической энергии в электрическую
Химическим источником тока называется устройство, в котором за счет протекания пространственно разделенных окислительно-восстановительных химических реакций их свободная энергия преобразуется в электрическую. По характеру работы эти источники делятся на две группы:
• первичные химические источники тока или гальванические элементы;
• вторичные источники или электрические аккумуляторы.
Первичные источники допускают только однократное использование, так как вещества, образующиеся при их разряде, не могут быть превращены в исходные активные материалы. Полностью разряженный гальванический элемент, как правило, к дальнейшей работе непригоден - он является необратимым источником энергии.
Вторичные химические источники тока являются обратимыми источниками энергии - после как угодно глубокого разряда их работоспособность можно полностью восстановить путем заряда. Для этого через вторичный источник достаточно пропустить электрический ток в направлении, обратном тому, в котором он протекал при разряде. В процессе заряда образовавшиеся при разряде вещества, превратятся в первоначальные активные материалы. Так происходит многократное превращение свободной энергии химического источника тока в электрическую энергию (разряд аккумулятора) и обратное превращение электрической энергии в свободную энергию химического источника тока (заряд аккумулятора).
Прохождение тока через электрохимические системы связано с происходящими при этом химическими реакциями (превращениями). Поэтому между количеством вещества, вступившего в электрохимическую реакцию и подвергшегося превращениям, и количеством затраченного или высвободившегося при этом электричества существует зависимость, которая была установлена Майклом Фарадеем.
Согласно первому закону Фарадея масса вещества, вступившего в электродную реакцию или получившегося в результате ее протекания, пропорциональна количеству электричества, прошедшего через систему.
Согласно второму закону Фарадея, при равном количестве прошедшего через систему электричества массы прореагировавших веществ относятся между собой как их химические эквиваленты.
На практике электрохимическому изменению подвергается меньшее количество вещества, чем по законам Фарадея - при прохождении тока помимо основных электрохимических реакций происходят еще и параллельные или вторичные (побочные), изменяющие массу продуктов, реакции. Для учета влияния таких реакций введено понятие выхода по току.
Выход по току это та часть количества электричества, прошедшего через систему, которая приходится на долю основной рассматриваемой электрохимической реакции
Разряд аккумулятора
Активными веществами заряженного свинцового аккумулятора, принимающими участие в токообразующем процессе, являются:
• на положительном электроде - двуокись свинца (темно-коричневого цвета);
• на отрицательном электроде - губчатый свинец (серого цвета);
• электролит - водный раствор серной кислоты.
Часть молекул кислоты в водном растворе всегда диссоциирована на положительно заряженные ионы водорода и отрицательно заряженные сульфат-ионы.
Свинец, который является активной массой отрицательного электрода, частично растворяется в электролите и окисляется в растворе с образованием положительных ионов. Освободившиеся при этом избыточные электроны сообщают электроду отрицательный заряд и начинают движение по замкнутому участку внешней цепи к положительному электроду.
Положительно заряженные ионы свинца вступают в реакцию с отрицательно заряженными сульфат-ионами, с образованием сульфата свинца, который имеет незначительную растворимость и поэтому осаждается на поверхности отрицательного электрода. В процессе разряда аккумулятора активная масса отрицательного электрода преобразуется из губчатого свинца в сернокислый свинец с изменением серого цвета на светло-серый.
Двуокись свинца положительного электрода растворяется в электролите в значительно меньшем количестве, чем свинец отрицательного электрода. При взаимодействии с водой диссоциирует (распадается в растворе на заряженные частицы - ионы), образуя ионы четырехвалентного свинца и ионы гидроксила.
Ионы сообщают электроду положительный потенциал и, присоединяя электроны, пришедшие по внешней цепи от отрицательного электрода, восстанавливаются до ионов двухвалентного свинца
Ионы взаимодействуют с ионами, образуя сернокислый свинец, который по указанной выше причине также осаждается на поверхности положительного электрода, как это имело место на отрицательном. Активная масса положительного электрода по мере разряда преобразуется из двуокиси свинца в сульфат свинца с изменением ее цвета из темно-коричневого в светло-коричневый.
В результате разряда аккумулятора активные материалы и положительного, и отрицательного электродов превращаются в сульфат свинца. При этом на образование сульфата свинца расходуется серная кислота и образуется вода из освободившихся ионов, что приводит к снижению плотности электролита при разряде.
Заряд аккумулятора
В электролите у обоих электродов присутствуют в небольших количествах ионы сульфата свинца и воды. Под влиянием напряжения источника постоянного тока, в цепь которого включен заряжаемый аккумулятор, во внешней цепи устанавливается направленное движение электронов к отрицательному выводу аккумулятора.
Двухвалентные ионы свинца у отрицательного электрода нейтрализуются (восстанавливаются) поступившими двумя электронами, превращая активную массу отрицательного электрода в металлический губчатый свинец. Оставшиеся свободными ионы образуют серную кислоту
У положительного электрода под действием зарядного тока двухвалентные ионы свинца отдают два электрона, окисляясь в четырехвалентные. Последние, соединяясь через промежуточные реакции с двумя ионами кислорода, образуют двуокись свинца, которая выделяется на электроде. Ионы и так же, как и у отрицательного электрода, образуют серную кислоту, в результате чего при заряде растет плотность электролита.
Когда процессы преобразования веществ в активных массах положительного и отрицательного электродов окончены, плотность электролита перестает изменяться, что служит признаком окончания заряда аккумулятора. При дальнейшем продолжении заряда происходит так называемый вторичный процесс - электролитическое разложение воды на кислород и водород. Выделяясь из электролита в виде пузырьков газа, они создают эффект его интенсивного кипения, что также служит признаком окончания процесса заряда.
Расход основных токообразующих реагентов
Для получения емкости в один ампер-час при разряде аккумулятора необходимо, чтобы в реакцииприняло участие:
• 4,463 г двуокиси свинца
• 3,886 г губчатого свинца
• 3,660 г серной кислоты
Суммарный теоретический расход материалов для получения 1 А-ч (удельный расход материалов) электричества составит 11,989 г/А-ч, а теоретическая удельная емкость - 83,41 А-ч/кг.
При величине номинального напряжения аккумулятора 2 В теоретический удельный расход материалов на единицу энергии равен 5,995 г/Втч, а удельная энергия аккумулятора составит 166,82 Вт-ч/кг.
Однако на практике невозможно добиться полного использования активных материалов, принимающих участие в токообразующем процессе. Примерно половина поверхности активной массы недоступна для электролита, так как служит основой для построения объемного пористого каркаса, обеспечивающего механическую прочность материала. Поэтому реальный коэффициент использования активных масс положительного электрода составляет 45-55 %, а отрицательного 50-65 %. Кроме того, в качестве электролита используется 35-38%-ный раствор серной кислоты. Поэтому величина реального удельного расхода материалов значительно выше, а реальные значения удельной емкости и удельной энергии значительно ниже, чем теоретические.
Электродвижущая сила
Электродвижущей силой (ЭДС) аккумулятора Е называют разность его электродных потенциалов, измеренную при разомкнутой внешней цепи.
ЭДС батареи, состоящей из n последовательно соединенных аккумуляторов.
Следует различать равновесную ЭДС аккумулятора и неравновесную ЭДС аккумулятора в течение времени от размыкания цепи до установления равновесного состояния (период протекания переходного процесса).
ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление не менее 300 Ом/В). Для этого вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток.
Равновесная ЭДС свинцового аккумулятора, как и любого химического источника тока, зависит от химических и физических свойств веществ, принимающих участие в токообразующем процессе, и совершенно не зависит от размеров и формы электродов, а также от количества активных масс и электролита. Вместе с тем в свинцовом аккумуляторе электролит принимает непосредственное участие в токообразующем процессе на аккумуляторных электродах и изменяет свою плотность в зависимости от степени заряженности аккумуляторов. Поэтому равновесная ЭДС, которая в свою очередь является функцией плотности
Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь.
Внутреннее сопротивление
Сопротивление, оказываемое аккумулятором протекающему внутри него току (зарядному или разрядному), принято называть внутренним сопротивлением аккумулятора.
Сопротивление активных материалов положительного и отрицательного электродов, а также сопротивление электролита изменяются в зависимости от степени заряженности аккумулятора. Кроме того, сопротивление электролита весьма существенно зависит от температуры.
Поэтому омическое сопротивление также зависит от степени заряженности батареи и температуры электролита.
Сопротивление поляризации зависит от силы разрядного (зарядного) тока и температуры и не подчиняется закону Ома.
Внутреннее сопротивление одного аккумулятора и даже аккумуляторной батареи, состоящей из нескольких последовательно соединенных аккумуляторов, незначительно и составляет в заряженном состоянии всего несколько тысячных долей Ома. Однако в процессе разряда оно существенно изменяется.
Электрическая проводимость активных масс уменьшается для положительного электрода примерно в 20 раз, а для отрицательного - в 10 раз. Электропроводность электролита также изменяется в зависимости от его плотности. При увеличении плотности электролита от 1,00 до 1,70 г/см3 его электропроводность сначала растет до его максимального значения, а затем вновь уменьшается.
По мере разряда аккумулятора плотность электролита снижается от 1,28 г/см3 до 1,09 г/см3, что приводит к снижению его электропроводности почти в 2,5 раза. В результате омическое сопротивление аккумулятора по мере разряда увеличивается. В разряженном состоянии сопротивление достигает значения, более чем в 2 раза превышающего его величину в заряженном состоянии.
Кроме состояния заряженности существенное влияние на сопротивление аккумуляторов оказывает температура. С понижением температуры удельное сопротивление электролита возрастает и при температуре -40 °С становится примерно в 8 раз больше, чем при +30 °С. Сопротивление сепараторов также резко возрастает с понижением температуры и в том же интервале температуры увеличивается почти в 4 раза. Это является определяющим фактором увеличения внутреннего сопротивления аккумуляторов при низких температурах.
Напряжение при заряде и разряде
Разность потенциалов на полюсных выводах аккумулятора (батареи) в процессе заряда или разряда при наличии тока во внешней цепи принято называть напряжением аккумулятора (батареи). Наличие внутреннего сопротивления аккумулятора приводит к тому, что его напряжение при разряде всегда меньше ЭДС, а при заряде - всегда больше ЭДС.
При заряде аккумулятора напряжение на его выводах должно быть больше его ЭДС на сумму внутренних потерь.
В начале заряда происходит скачок напряжения на величину омических потерь внутри аккумулятора, а затем резкое повышение напряжения за счет потенциала поляризации, вызванное в основном быстрым увеличением плотности электролита в порах активной массы. Далее происходит медленный рост напряжения, обусловленный главным образом ростом ЭДС аккумулятора вследствие увеличения плотности электролита.
После того, как основное количество сульфата свинца преобразуется в РЬО2 и РЬ, затраты энергии все в большей мере вызывают разложение воды (электролиз) Избыточное количество ионов водорода и кислорода, появляющееся в электролите, еще больше увеличивает разность потенциалов разноименных электродов. Это приводит к быстрому росту зарядного напряжения, вызывающему ускорение процесса разложения воды. Образующиеся при этом ионы водорода и кислорода не вступают во взаимодействие с активными материалами. Они рекомбинируют в нейтральные молекулы и выделяются из электролита в виде пузырьков газа (на положительном электроде выделяется кислород, на отрицательном - водород), вызывая "кипение" электролита.
Если продолжить процесс заряда, можно увидеть, что рост плотности электролита и зарядного напряжения практически прекращается, так как уже почти весь сульфат свинца прореагировал, и вся подводимая к аккумулятору энергия теперь расходуется только на протекание побочного процесса - электролитическое разложение воды. Этим объясняется и постоянство зарядного напряжения, которое служит одним из признаков окончания зарядного процесса.
После прекращения заряда, то есть отключения внешнего источника, напряжение на выводах аккумулятора резко снижается до значения его неравновесной ЭДС, или на величину омических внутренних потерь. Затем происходит постепенное снижение ЭДС (вследствие уменьшения плотности электролита в порах активной массы), которое продолжается до полного выравнивания концентрации электролита в объеме аккумулятора и порах активной массы, что соответствует установлению равновесной ЭДС.
При разряде аккумулятора напряжение на его выводах меньше ЭДС на величину внутреннего падения напряжения.
В начале разряда напряжение аккумулятора резко падает на величину омических потерь и поляризации, обусловленной снижением концентрации электролита в порах активной массы, то есть концентрационной поляризации. Далее при установившемся (стационарном) процессе разряда происходит снижение плотности электролита в объеме аккумулятора, обусловливающее постепенное снижение разрядного напряжения. Одновременно происходит изменение соотношения содержания сульфата свинца в активной массе, что также вызывает повышение омических потерь. При этом частицы сульфата свинца (имеющего примерно втрое больший объем в сравнении с частицами свинца и его двуокиси, из которых они образовались) закрывают поры активной массы, чем препятствуют прохождению электролита в глубину электродов.
Это вызывает усиление концентрационной поляризации, приводящее к более быстрому снижению разрядного напряжения.
При прекращении разряда напряжение на выводах аккумулятора быстро повышается на величину омических потерь, достигая значения неравновесной ЭДС. Дальнейшее изменение ЭДС вследствие выравнивания концентрации электролита в порах активных масс и в объеме аккумулятора приводит к постепенному установлению значения равновесной ЭДС.
Напряжение аккумулятора при его разряде определяется в основном температурой электролита и силой разрядного тока. Как сказано выше, сопротивление свинцового аккумулятора (батареи) незначительно и в заряженном состоянии составляет всего несколько миллиОм. Однако при токах стартерного разряда, сила которых в 4-7 раз превышает значение номинальной емкости, внутреннее падение напряжения оказывает существенное влияние на разрядное напряжение. Увеличение омических потерь с понижением температуры связано с ростом сопротивления электролита. Кроме того, резко возрастает вязкость электролита, что затрудняет процесс диффузии его в поры активной массы и повышает концентрационную поляризацию (то есть увеличивает потери напряжения внутри аккумулятора за счет снижения концентрации электролита в порах электродов).
При токе более 60 А зависимость напряжения разряда от силы тока является практически линейной при всех температурах.
Среднее значение напряжения аккумулятора при заряде и разряде определяют как среднее арифметическое значений напряжения, измеренных через равные промежутки времени.
Емкость аккумулятора
Емкость аккумулятора - это количество электричества, полученное от аккумулятора при его разряде до установленного конечного напряжения. В практических расчетах емкость аккумулятора принято выражать в ампер-часах (Ач). Разрядную емкость можно вычислить, умножив силу разрядного тока на продолжительность разряда.
Разрядная емкость, на которую рассчитан аккумулятор и которая указывается изготовителем, называется номинальной емкостью.
Кроме нее, важным показателем является также емкость, сообщаемая батарее при заряде.
Разрядная емкость зависит от целого ряда конструктивных и технологических параметров аккумулятора, а также условий его эксплуатации. Наиболее существенными конструктивными параметрами являются количество активной массы и электролита, толщина и геометрические размеры аккумуляторных электродов. Основными технологическими параметрами, влияющими на емкость аккумулятора, являются рецептура активных материалов и их пористость. Эксплуатационные параметры - температура электролита и сила разрядного тока - также оказывают значительное влияние на разрядную емкость. Обобщенным показателем, характеризующим эффективность работы аккумулятора, является коэффициент использования активных материалов.
Для получения емкости в 1 А-ч, как указывалось выше, теоретически необходимо 4,463 г двуокиси свинца, 3,886 г губчатого свинца и 3,66 г серной кислоты. Теоретический удельный расход активных масс электродов составляет 8,32 г/Ач. В реальных аккумуляторах удельный расход активных материалов при 20-часовом режиме разряда и температуре электролита 25 °С составляет от 15,0 до 18,5 г/А-ч, что соответствует коэффициенту использования активных масс 45-55 %. Следовательно, практический расход активной массы превышает теоретические величины в 2 и более раза.
На степень использования активной массы, а следовательно, и на величину разрядной емкости оказывают влияние следующие основные факторы.
Пористость активной массы. С увеличением пористости улучшаются условия диффузии электролита в глубину активной массы электрода и увеличивается истинная поверхность, на которой протекает токообразующая реакция. С ростом пористости увеличивается разрядная емкость. Величина пористости зависит от размеров частиц свинцового порошка и рецептуры приготовления активных масс, а также от применяемых добавок. Причем повышение пористости приводит к уменьшению долговечности вследствие ускорения процесса деструкции высокопористых активных масс. Поэтому величина пористости выбирается производителями с учетом не только высоких емкостных характеристик, но и обеспечения необходимой долговечности батареи в эксплуатации. В настоящее время оптимальной считается пористость в пределах 46-60 %, в зависимости от назначения батареи.
Толщина электродов. С уменьшением толщины снижается неравномерность нагруженности наружных и внутренних слоев активной массы электрода, что способствует увеличению разрядной емкости. У более толстых электродов внутренние слои активной массы используются весьма незначительно, особенно при разряде большими токами. Поэтому с ростом разрядного тока различия в емкости аккумуляторов, имеющих электроды различной толщины, резко уменьшаются.
Пористость и рациональность конструкции материала сепаратора. С ростом пористости сепаратора и высоты его ребер увеличивается запас электролита в межэлектродном зазоре и улучшаются условия его диффузии.
Плотность электролита. Влияет на емкость аккумулятора, и срок его службы. При повышении плотности электролита емкость положительных электродов увеличивается, а емкость отрицательных, особенно при отрицательной температуре, снижается вследствие ускорения пассивации поверхности электрода. Повышенная плотность также отрицательно сказывается на сроке службы аккумулятора вследствие ускорения коррозионных процессов на положительном электроде. Поэтому оптимальная плотность электролита устанавливается исходя из совокупности требований и условий, в которых эксплуатируется батарея. Так, например, для стартерных батарей, работающих в умеренном климате, рекомендована рабочая плотность электролита 1,26-1,28 г/см3, а для районов с жарким (тропическим) климатом 1,22-1,24 г/см3.
Сила разрядного тока, которым аккумулятор должен непрерывно разряжаться в течение заданного времени (характеризует режим разряда). Режимы разряда условно разделяют на длительные и короткие. При длительных режимах разряд происходит малыми токами в течение нескольких часов. Например, 5-, 10- и 20-часовой разряды. При коротких или стартерных разрядах сила тока в несколько раз больше номинальной емкости аккумулятора, а разряд длится несколько минут или секунд. При увеличении разрядного тока скорость разряда поверхностных слоев активной массы возрастает в большей степени, чем глубинных. В результате рост сернокислого свинца в устьях пор происходит быстрее, чем в глубине, и пора закупоривается сульфатом раньше, чем успевает прореагировать ее внутренняя поверхность. Вследствие прекращения диффузии электролита внутрь поры реакция в ней прекращается. Таким образом, чем больше разрядный ток, тем меньше емкость аккумулятора, а следовательно, и коэффициент использования активной массы.
Для оценки пусковых качеств батарей их емкость характеризуется также количеством прерывистых стартерных разрядов (например, длительностью 10-15 с с перерывами между ними по 60 с). Емкость, которую отдает батарея при прерывистых разрядах, превышает емкость при непрерывном разряде тем же током, особенно при стартерном режиме разряда.
В настоящее время в международной практике оценки емкостных характеристик стартерных аккумуляторов применяется понятие "резервная" емкость. Она характеризует время разряда батареи (в минутах) при силе разрядного тока 25 А независимо от номинальной емкости батареи. По усмотрению производителя допускается устанавливать величину номинальной емкости при 20-часовом режиме разряда в ампер-часах или по резервной емкости в минутах.
Температура электролита. С ее понижением разрядная емкость аккумуляторов уменьшается. Причина этого - повышение вязкости электролита и его электрического сопротивления, что замедляет скорость диффузии электролита в поры активной массы. Кроме того, с понижением температуры ускоряются процессы пассивации отрицательного электрода.
Температурный коэффициент емкости а показывает изменение емкости в процентах при изменении температуры на 1 °С.
При испытаниях сравнивают разрядную емкость, полученную при длительном режиме разряда с величиной номинальной емкости, определяемой при температуре электролита +25 °С.
Температура электролита при определении емкости на длительном режиме разряда в соответствии с требованиями стандартов должна находиться в пределах от +18 °С до +27 °С.
Параметры стартерного разряда оценивают продолжительностью разряда в минутах и напряжением в начале разряда. Эти параметры определяются на первом цикле при +25 °С (проверка для сухозаряженных батарей) и на последующих циклах при температурах -18 °С или -30 °С.
Степень заряженности. С увеличением степени заряженности при прочих равных условиях емкость увеличивается и достигает своего максимального значения при полном заряде батарей. Это обусловлено тем, что при неполном заряде количество активных материалов на обоих электродах, а также плотность электролита не достигают своих максимальных значений.
Энергия и мощность аккумулятора
Энергия аккумулятора W выражается в Ватт-часах и определяется произведением его разрядной (зарядной) емкости на среднее разрядное (зарядное) напряжение.
Так как с изменением температуры и режима разряда меняются емкость аккумулятора и его разрядное напряжение, то при понижении температуры и увеличении разрядного тока энергия аккумулятора уменьшается еще более значительно, чем его емкость.
При сравнении между собой химических источников тока, различающихся по емкости, конструкции и даже по электрохимической системе, а также при определении направлений их усовершенствования пользуются показателем удельной энергии, - энергии, отнесенной к единице массы аккумулятора или его объема. Для современных свинцовых стартерных необслуживаемых батарей удельная энергия при 20-часовом режиме разряда составляет 40-47 Вт ч/кг.
Количество энергии, отдаваемой аккумулятором в единицу времени, называется его мощностью. Ее можно определить как произведение величины разрядного тока на среднее разрядное напряжение.
Саморазряд аккумулятора
Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.
Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.
Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.
Наличие примесей различных металлов на поверхности отрицательного электрода оказывает весьма значительное влияние (каталитическое) на увеличение скорости саморастворения свинца (вследствие снижения перенапряжения выделения водорода). Практически все металлы, встречающиеся в виде примесей в аккумуляторном сырье, электролите и сепараторах, или вводимые в виде специальных добавок, способствуют повышению саморазряда. Попадая на поверхность отрицательного электрода, они облегчают условия выделения водорода.
Часть примесей (соли металлов с переменной валентностью) действуют как переносчики зарядов с одного электрода на другой. В этом случае ионы металлов восстанавливаются на отрицательном электроде и окисляются на положительном (такой механизм саморазряда приписывают ионам железа).
Саморазряд положительного активного материала обусловлен протеканием реакции.
2РЬО2 + 2H2SO4 -> PbSCU + 2H2O + О2 Т.
Скорость данной реакции также возрастает с ростом концентрации электролита.
Так как реакция протекает с выделением кислорода, то скорость ее в значительной степени определяется кислородным перенапряжением. Поэтому добавки, снижающие потенциал выделения кислорода (например, сурьма, кобальт, серебро), будут способствовать росту скорости реакции саморастворения двуокиси свинца. Скорость саморазряда положительного активного материала в несколько раз ниже скорости саморазряда отрицательного активного материала.
Другой причиной саморазряда положительного электрода является разность потенциалов материала токоотвода и активной массы этого электрода. Возникающий вследствие этой разности потенциалов гальванический микроэлемент превращает при протекании тока свинец токоотвода и двуокись свинца положительной активной массы в сульфат свинца.
Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками. Этот вид саморазряда не отличается от обычного разряда очень малыми токами при замкнутой внешней цепи и легко устраним. Для этого необходимо содержать поверхность батарей в чистоте.
Саморазряд батарей в значительной мере зависит от температуры электролита. С понижением температуры саморазряд уменьшается. При температуре ниже 0 °С у новых батарей он практически прекращается. Поэтому хранение батарей рекомендуется в заряженном состоянии при низких температурах (до -30 °С).
В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.
Снижение саморазряда возможно за счет повышения перенапряжения выделений кислорода и водорода на аккумуляторных электродах.
Для этого необходимо, во-первых, использовать возможно более чистые материалы для производства аккумуляторов, уменьшать количественное содержание легирующих элементов в аккумуляторных сплавах, использовать только
чистую серную кислоту и дистиллированную (или близкую к ней по чистоте при других методах очистки) воду для приготовления всех электролитов, как при производстве, так и при эксплуатации. Например, благодаря снижению содержания сурьмы в сплаве токо-отводов с 5 % до 2 % и использованию дистиллированной воды для всех технологических электролитов, среднесуточный саморазряд снижается в 4 раза. Замена сурьмы на кальций позволяет еще больше снизить скорость саморазряда.
Снижению саморазряда могут также способствовать добавки органических веществ - ингибиторов саморазряда.
Применение общей крышки и скрытых межэлементных соединений в значительной степени снижает скорость саморазряда от токов утечки, так как значительно снижается вероятность гальванической связи между далеко отстоящими полюсными выводами.
Иногда саморазрядом называют быструю потерю емкости вследствие короткого замыкания внутри аккумулятора. Такое явление объясняется прямым разрядом через токопроводящие мостики, образовавшиеся между разноименными электродами.
Применение сепараторов-конвертов в необслуживаемых аккумуляторах
исключает возможность образования коротких замыканий между разноименными электродами в процессе эксплуатации. Однако такая вероятность остается вследствие возможных сбоев в работе оборудования при массовом производстве. Обычно такой дефект выявляется в первые месяцы эксплуатации и батарея подлежит замене по гарантии.
Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени.
Действующими в настоящее время стандартами саморазряд характеризуется также напряжением стартерного разряда при -18 °С после испытания: бездействия в течение 21 суток при температуре +40 °С.